Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664755

RESUMEN

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Asunto(s)
Antioxidantes , Endometriosis , Células de la Granulosa , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Femenino , Estrés Oxidativo/efectos de los fármacos , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Endometriosis/metabolismo , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Hidroxibenzoatos/farmacología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38548490

RESUMEN

Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.

3.
Org Lett ; 25(51): 9202-9206, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38113053

RESUMEN

An unprecedented transient promotion function (TPF) of CO2 in the electrochemical hydrogenation/deuteration of imines (especially α-iminonitriles) is reported. The TPF influence of CO2 results from the introduction of CO2 that disperses the negative charges of the imine radical anion intermediate. The resulting redistribution of electrons leads to a lower reduction potential of the CO2-substituted imine radical anion and thus facilitates the succeeding one-electron reduction. CO2 is finally released via spontaneous decarboxylation to complete the transient promotion process.

4.
J Ovarian Res ; 16(1): 213, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946316

RESUMEN

The oocyte cumulus complex is mainly composed of an oocyte, the perivitelline space, zona pellucida and numerous granulosa cells. The cumulus granulosa cells (cGCs) provide a particularly important microenvironment for oocyte development, regulating its growth, maturation and meiosis. In this study, we studied the internal structures and cell-to-cell connections of mouse cGCs using focused ion beam scanning electron microscopy (FIB-SEM). We reconstructed three-dimensional models to display characteristic connections between the oocyte and cGCs, and to illustrate various main organelles in cGCs together with their interaction relationship. A special form of cilium identified in granulosa cell was never reported in previous literature.


Asunto(s)
Oocitos , Microscopía Electrónica de Volumen , Femenino , Ratones , Animales , Oocitos/fisiología , Células de la Granulosa/fisiología , Oogénesis , Células del Cúmulo
5.
J Agric Food Chem ; 71(49): 19749-19759, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38029390

RESUMEN

A recognition motif is vital in determining the specificity and sensitivity of the fluorescence polarization assay (FPA) for detecting chemical contaminants in food. Four candidates (Gyrase, GyrBA, TopIV, and QepA) were prepared for this study. The applicability of QepA was confirmed through DNA cleavage assay, inhibition effects, and mechanism investigations using molecular docking, compared to other counterparts. Finally, a novel FPA based on QepA and a CIP-FITC tracer for the detection of fluoroquinolones (FQs) in eggs was developed. The limits of detection (LODs) for eight fluoroquinolones ranged from 2.2 to 5.1 ng g-1, with enrofloxacin, danofloxacin, and difloxacin meeting the maximum residue limits (MRLs). The spiked recoveries ranged from 65.8 to 103.6% with coefficients of variation (CVs) of 5.4-12.8%. Therefore, a new recognition motif for FQs that did not belong to conventional antibodies was identified, and QepA-based FPA could be a potential tool for rapid, homogeneous, and sensitive monitoring of the residue of FQs in eggs.


Asunto(s)
Huevos , Fluoroquinolonas , Simulación del Acoplamiento Molecular , Huevos/análisis , Límite de Detección , Polarización de Fluorescencia
6.
Org Lett ; 25(31): 5911-5915, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37530586

RESUMEN

An unprecedented Csp3-H imination reaction using arylazo sulfones as the readily accessible and stable N source is reported. The synthetic virtues are demonstrated through mild conditions, simple operation, good air compatibility, and functional group tolerance, as well as suitability for gram-scale reaction. The resulting imines can be further converted to α-amino acids. The presented results shed light on an unusual usage of arylazo sulfones and will inspire novel experimental design by using arylazo sulfones as the N source.

7.
Plant Biotechnol J ; 21(11): 2348-2357, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37530223

RESUMEN

Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.


Asunto(s)
Barajamiento de ADN , Mijos , Humanos , Mijos/genética , Estudio de Asociación del Genoma Completo , Multiómica , Genómica/métodos
8.
Front Neurosci ; 17: 1216929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638318

RESUMEN

DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.

9.
Biomed Pharmacother ; 166: 115411, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37651800

RESUMEN

Kinesin family member 3 A (KIF3A) decrease have been reported in silicotic patients and rats. However, the detailed mechanisms of KIF3A in silicosis remain unknown. In this study, we demonstrated that KIF3A effectively blocked the expression of ß-catenin and downstream myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling, thus inhibiting silica-induced epithelial-myofibroblast transition (EMyT). Moreover, KIF3A was identified as a downstream mediator of an antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Knockdown of KIF3A expression reactivated ß-catenin/myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling that was attenuated by Ac-SDKP in vitro. Collectively, our findings suggest that Ac-SDKP plays its anti-fibrosis role via KIF3A-mediated ß-catenin suppression, at least in part, in both in vivo model of silicosis and in vitro model of EMyT.


Asunto(s)
Silicosis , beta Catenina , Animales , Ratas , Cinesinas , Miofibroblastos , Factor de Respuesta Sérica , Dióxido de Silicio/toxicidad , Factores de Transcripción
10.
Cell ; 186(17): 3606-3618.e16, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37480850

RESUMEN

Injury induces systemic responses, but their functions remain elusive. Mechanisms that can rapidly synchronize wound responses through long distances are also mostly unknown. Using planarian flatworms capable of whole-body regeneration, we report that injury induces extracellular signal-regulated kinase (Erk) activity waves to travel at a speed 10-100 times faster than those in other multicellular tissues. This ultrafast propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. The morphological properties of muscles allow them to act as superhighways for propagating and disseminating wound signals. Inhibiting Erk propagation prevents tissues distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues shortly after the first injury. Our findings provide a mechanism for long-range signal propagation in large, complex tissues to coordinate responses across cell types and highlight the function of feedback between spatially separated tissues during whole-body regeneration.


Asunto(s)
Planarias , Regeneración , Animales , Sistema de Señalización de MAP Quinasas , Músculos , Fosforilación , Planarias/fisiología , Procesamiento Proteico-Postraduccional
11.
Nat Methods ; 20(8): 1179-1182, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37349575

RESUMEN

Capture array-based spatial transcriptomics methods have been widely used to resolve gene expression in tissues; however, their spatial resolution is limited by the density of the array. Here we present expansion spatial transcriptomics to overcome this limitation by clearing and expanding tissue prior to capturing the entire polyadenylated transcriptome with an enhanced protocol. This approach enables us to achieve higher spatial resolution while retaining high library quality, which we demonstrate using mouse brain samples.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Biblioteca de Genes , Poli A
12.
Quant Imaging Med Surg ; 13(4): 2712-2734, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37064346

RESUMEN

Background and Objective: Cerebrovascular diseases (CVDs), particularly cerebral stroke, remain a primary cause of disability and death worldwide. Accurate diagnosis of CVDs is essential to guide therapeutic decisions and foresee the prognosis. Different CVDs have different pathological processes while they have many signs in common with some other brain diseases. Thus, differential diagnoses of strokes from other primary and secondary CVDs are especially important and challenging. Methods: This review is composed mainly based on searching PubMed articles between September, 2013 and December 26, 2022 in English. Key Content and Findings: Neuroimaging is a powerful tool for CVD diagnosis including cerebral angiography, ultrasound, computed tomography, and positron emission tomography as well as magnetic resonance imaging (MRI). MRI excels other imaging techniques by its features of non-invasive, diverse sequences and high spatiotemporal resolution. It can detect hemodynamic, structural alterations of intracranial arteries and metabolic status of their associated brain regions. In acute stroke, differential diagnosis of ischemic from hemorrhagic stroke and other intracranial vasculopathies is a common application of MRI. By providing information about the pathological characteristics of cerebral diseases exhibiting different degrees of behavioral alterations, cognitive impairment, motor dysfunction and other indications, MRI can differentiate strokes from other primary CVDs involving cerebral small vessels and identify vascular dementia from hyponatremia, brain tumors and other secondary or non-primary CVDs. Conclusions: Recent advances in MRI technology allow clinical neuroimaging to provide unique reference for differentiating many previously inconclusive CVDs. MRI technology is worthy of full exploration while breaking its limitations in clinical applications should be considered.

13.
STAR Protoc ; 4(2): 102254, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37115666

RESUMEN

Engineered microorganisms hold potential for disease diagnosis and treatment. Here, we present a protocol to engineer E. coli Nissle 1917 strain (iROBOT) using genome insertion and plasmid construction to diagnose, record, and ameliorate inflammatory bowel disease in mice. We describe steps for constructing and administering iROBOT, diagnosing and recording colitis, preparing samples, and analyzing fluorescence and base editing ratios of iROBOT. We detail a colitis ameliorating assay using the disease activity index, colon length, tissue pathological section, and cytokine analysis. For complete details of the use and execution of this protocol, please refer to Zou et al.1.

14.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993633

RESUMEN

Injury induces systemic, global responses whose functions remain elusive. In addition, mechanisms that rapidly synchronize wound responses through long distances across the organismal scale are mostly unknown. Using planarians, which have extreme regenerative ability, we report that injury induces Erk activity to travel in a wave-like manner at an unexpected speed (∻1 mm/h), 10-100 times faster than those measured in other multicellular tissues. This ultrafast signal propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. Combining experiments and computational models, we show that the morphological properties of muscles allow them to minimize the number of slow intercellular signaling steps and act as bidirectional superhighways for propagating wound signals and instructing responses in other cell types. Inhibiting Erk propagation prevents cells distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues within a narrow time window after the first injury. These results suggest that rapid responses in uninjured tissues far from wounds are essential for regeneration. Our findings provide a mechanism for long-range signal propagation in large and complex tissues to coordinate cellular responses across diverse cell types, and highlights the function of feedback between spatially separated tissues during whole-body regeneration.

15.
Org Lett ; 25(3): 549-554, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36637443

RESUMEN

Herein, a mild and convenient defluorinative reductive cross coupling of gem-difluoroalkenes with aliphatic aldehydes has been developed to afford diverse silyl-protected ß-fluorinated allylic alcohols. The reaction is operationally simple and shows good functional group tolerance with moderate to excellent yields. The utility of this method is demonstrated by converting the products into various bioactive fluorinated compounds, showing its potential applications in drug discovery and biochemistry.

16.
Meat Sci ; 197: 109078, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36549078

RESUMEN

The effects of κ-carrageenan gum (KG) on the 3D printability and rheological properties of pork pastes were investigated in this study. There were five groups with different levels of KG (0, 2, 4, 6, and 8 g/kg) named as KG-0, KG-2, KG-4, KG-6, and KG-8, respectively. The addition of KG increased the yield stress, viscosity, shear stress, recovery percentage, storage modulus, loss modulus, and initial and average flow forces (P < 0.05). The results of low-field nuclear magnetic resonance analysis revealed that addition of KG reduced T21 and T22 (P < 0.05). The best printing parameters were obtained by accuracy and stability results: printing filling percent, 90%; printing speed, 35 mm⋅s-1; layer height, 2 mm; nozzle diameter, 1.55 mm, and KG addition level, 6 g/kg. KG addition improved the hardness, springiness, chewiness, cohesiveness, adhesiveness, and density, respectively (P < 0.05). The results suggested that KG addition improved the rheological properties and 3D printability of the pork pastes.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Carragenina , Viscosidad , Reología
17.
Angew Chem Int Ed Engl ; 61(48): e202213636, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36203220

RESUMEN

The carbon dioxide (CO2 ) capture and utilization has attracted a great attention in organic synthesis. Herein, an unpresented transient stabilization effect (TSE) of CO2 is disclosed and well applied to the electrochemical hydrogenation of azo compounds to hydrazine derivatives. Mechanistic experiments and computational studies imply that CO2 can capture azo radical anion intermediates to protect the hydrogenation from potential degradation reactions, and is finally released through decarboxylation. The promotion effect of CO2 was further demonstrated to work in the preliminary study of electrochemical reductive coupling of α-ketoesters to vicinal diol derivatives. For the electrochemical reductive reactions mentioned above, CO2 is indispensable. The presented results shed light on a different usage of CO2 and could inspire novel experimental design by using CO2 as a transient protecting group.

18.
Biofabrication ; 15(1)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36126647

RESUMEN

Liver organoids represent emerging human-relevantin vitroliver models that have a wide range of biomedical applications in basic medical studies and preclinical drug discovery. However, the generation of liver organoids currently relies on the conventional Matrigel dome method, which lacks precise microenvironmental control over organoid growth and results in significant heterogeneity of the formed liver organoids. Here, we demonstrate a novel high-throughput culture method to generate uniform liver organoids from human pluripotent stem cell-derived foregut stem cells in micropatterned agarose scaffold. By using this approach, more than 8000 uniformly-sized liver organoids containing liver parenchyma cells, non-parenchymal cells, and a unique stem cell niche could be efficiently and reproducibly generated in a 48-well plate with a size coefficient of variation significance smaller than that in the Matrigel dome. Additionally, the liver organoids highly expressed liver-specific markers, including albumin (ALB), hepatocyte nuclear factor 4 alpha (HNF4α), and alpha-fetoprotein (AFP), and displayed liver functions, such as lipid accumulation, glycogen synthesis, ALB secretion, and urea synthesis. As a proof of concept, we evaluated the acute hepatotoxicity of acetaminophen (APAP) in these organoids and observed APAP-induced liver fibrosis. Overall, we expect that the liver organoids will facilitate wide biomedical applications in hepatotoxicity analysis and liver disease modeling.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Organoides , Humanos , Sefarosa , Acetaminofén/toxicidad , Hígado , Diferenciación Celular
19.
J Org Chem ; 87(16): 11131-11140, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35926078

RESUMEN

We report an electrochemical intramolecular [3 + 2] cyclization of alkynyl enaminones in a user-friendly undivided cell under constant current conditions without an oxidant and catalyst, and indeno[1,2-c]pyrrole derivatives could be obtained in good to excellent yields. Notably, preliminary substituent-controlled selective transformation is also achieved under electrocatalysis alone, and indeno[1,2-c]pyrrole (R4 ≠ H) or indanone derivatives (R4 = H) could be prepared directly under electrocatalysis without adding a base and heating process.


Asunto(s)
Indanos , Pirroles , Catálisis , Ciclización , Indanos/química , Pirroles/química
20.
iScience ; 25(8): 104728, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35880045

RESUMEN

Organoids are considered a game-changing paradigm of research models for human physiology and disease, which provides unsurpassed opportunities across disciplines in basic medical research, drug development, and personalized medicine. Here, we made a deep investigation for global patents of organoid technologies in the past decade using bibliometric analysis for the first time. We have identified a total of 672 patents related to organoid technology. The number of annual patent applications exhibits an overall upward growth trend over the past decade, especially entering an exponential growth since 2015. Notably, 76.64% of patents are related to the construction of organoid models. Liver, brain, and intestinal models take up the first three places in the physiological models, while tumor models account for 76.30% of the total patents for disease models. Furthermore, drug screening is the most preferred application, revealing the great commercial value of organoid technologies in precision medicine and preclinical drug screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...